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ABSTRACT: The Eastern Pacific population of leatherback turtles Dermochelys coriacea is Criti-
cally Endangered, with incidental capture in coastal and pelagic fisheries as one of the major
causes. Given the population's broad geographic range, status, and extensive overlap with fisheries

throughout the region, identifying areas of high importance is essential for effective conservation
and management. In this study, we created a machine-learning species distribution model trained
with remotely sensed environmental data and fishery-dependent leatherback presence (n = 1088)
and absence data (> 500 000 fishing sets with no turtle observations) from industrial and small-scale
fisheries that operated in the eastern Pacific Ocean between 1995 and 2020. The data were obtained
through a participatory collaboration between the Inter-American Convention for the Protection
and Conservation of Sea Turtles and the Inter-American Tropical Tuna Commission as well as non-
governmental organizations to support the quantification of leatherback vulnerability to fisheries
bycatch. A daily process was applied to predict the probability of leatherback occurrence as a func-
tion of dynamic and static environmental covariates. Coastal areas throughout the region were
highlighted as important habitats, particularly highly productive feeding areas over the continen-
tal shelf of Ecuador, Peru, and offshore from Chile, and breeding areas off Mexico and Central
America. Our model served as the basis to quantify leatherback vulnerability to fisheries bycatch
and the potential efficacy of conservation and management measures (Griffiths & Wallace et al.

2024; Endang Species Res 53:295—326). In addition, this approach can provide a modeling frame-
work for other data-limited vulnerable populations and species.

KEY WORDS: Dermochelys coriacea - Species distribution model - Probability of occurrence -
Boosted regression trees - Conservation priority-setting

1. INTRODUCTION production. This life history strategy exposes these

species to indirect (e.g. climate change and habitat

Marine turtles spend most of their lives at sea but are loss) and direct (e.qg. fishing, pollution and marine de-
tied to terrestrial habitats (i.e. nesting beaches) for re- bris, egg consumption, coastal development) anthro-
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pogenic threats that have caused declines in many
populations (Wallace et al. 2011, Northwest Atlantic
Leatherback Working Group 2019, Wibbels & Bevan
2019). Consequently, conservation efforts have in-
creased in many regions of the world to address these
threats, with varying degrees of success (e.g. Chaloupka
et al. 2008, Casale & Tucker 2017, Mazaris et al. 2017).

Of particular conservation concern is the leather-
back turtle Dermochelys coriacea, the largest (typi-
cally > 1.5 m curved carapace length) and most geo-
graphically widespread of all marine turtle species
(Eckert et al. 2012). Distributed circumglobally from
tropical to temperate regions and regularly occurring
in coastal as well as high-seas areas, the species com-
prises 7 regional management units (RMUSs) or sub-
populations (Wallace et al. 2023). Two RMUs —the
East Pacific (EP) and West Pacific — exist in the Paci-
fic Ocean, both of which are currently classified as
Critically Endangered on the [IUCN Red List (Tiwari et
al. 2013, Wallace et al. 2013). The EP leatherback
RMU has declined by over 909% since the 1980s,
largely due to unsustainable levels of incidental mor-
tality by industrialized and artisanal fisheries, which
mainly affect sub-adults and adults, as well as egg
consumption by humans (Laud OPO Network 2020).

Given that industrial and artisanal tuna (e.g. yel-
lowfin Thunnus albacares, albacore T. alalunga, big-
eye T. obesus, skipjack Katsuwonus pelamis) purse-
seine and longline fisheries cover a high proportion
of the species’ distribution in the east Pacific Ocean
(EPO) (Wallace et al. 2023), they unavoidably interact
with leatherback turtles and other sea turtle species
during their normal fishing operations as they target
tunas, billfish, and other species that share similar
epipelagic habitats (IATTC 2020). The Inter-American
Tropical Tuna Commission (IATTC) is the Regional
Fisheries Management Organization that is respon-
sible for the long-term conservation and sustainable
management of fisheries that target tuna and tuna-
like species in the EPO. Since the Antigua Con-
vention entered into force in 2010, which required
a significantly broader ecosystem-based approach
to management by the IATTC, several resolutions
pertaining to the conservation and management of
various sensitive bycatch species have been imple-
mented, including sea turtles (IATTC Resolution C-
07-03). However, in light of the declining population
of leatherback turtles in the EPO, the IATTC imple-
mented more stringent conservation measures in 2021
to mitigate fishery impacts on sea turtles (IATTC Res-
olution C-19-04).

Further, the Inter-American Convention for the Pro-
tection and Conservation of Sea Turtles (IAC) is a

binding intergovernmental treaty that provides the
legal framework for states of North, Central, and
South America and the Caribbean Sea to take actions
to benefit sea turtles, in both nesting beaches and the
Parties' territorial waters. Concerned with the critical
status of leatherback turtles in the EPQO, the [IAC
adopted Resolution CIT-COP7-2015-R2 in 2015, up-
dated in 2022 to Resolution CIT-COP10-2020-R6,
which requests IAC Parties to implement or improve
measures to reduce bycatch of leatherback sea turtles
in the eastern Pacific fisheries based on the best sci-
entific information available and using recommen-
dations from [AC Resolution CIT-COP10-2022-R7 to
exercise FAQO guidelines to reduce sea turtle mortality
in fishing operations (FAO Fisheries Department 2009).

Assessing fisheries impacts on bycatch species is
challenging due to the frequent lack of reliable bio-
logical and catch information, especially for species
of little or no commercial value or in data-limited set-
tings. Therefore, assessing bycatch species using tra-
ditional stock assessment approaches is often both
cost-prohibitive and impractical, thus requiring alter-
native approaches. To address this issue, Griffiths et
al. (2019) developed a flexible, spatially explicit,
quantitative ecological risk assessment approach —
Ecological Assessment of Sustainable Impacts of Fish-
eries (EASI-Fish) — to quantify the cumulative impacts
of multiple fisheries on data-limited bycatch species,
such as sea turtles.

Because the extent of areal overlap between the
species and each interacting fishery is of critical
importance in the EASI-Fish approach, a reliable spe-
cies distribution model (SDM) is required. SDMs are
built to describe the relationship between a species
and environmental conditions and can predict how
environmental variability may affect their distribu-
tion and habitat choice (Elith & Leathwick 2009).
Although SDMs have been widely applied in predict-
ing suitable habitats for marine species over the past
few decades (Melo-Merino et al. 2020), only a few
studies have focused on bycatch species that are data-
poor and are of particularly high conservation impor-
tance (e.g. Sequeira et al. 2014, Abrahms et al. 2019,
Lezama-Ochoa et al. 2020, Lopez et al. 2020). For
example, a simple environmental envelope model
was developed for NOAA's TurtleWatch tool (Howell
et al. 2008, 2015) to mitigate loggerhead Caretta
caretta and leatherback turtle bycatch by longline
fisheries in the central north Pacific Ocean.

For rarely encountered bycatch species, whether
their rarity is due to fishing gear selectivity issues, non-
reporting, or declining population size, there is often a
small number of observations from which to develop
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an SDM. Therefore, this limits the types of models
available to develop an SDM that can make use of scant
presence records. Machine-learning algorithms, includ-
ing boosted regression trees (BRT) (Elith et al. 2006),
are a relatively new suite of powerful tools that can ac-
commodate non-linear relationships, high-dimensional
large data sets, imbalanced classes, and limited species
occurrences (Elith et al. 2008, Mi et al. 2017).

The goal of this study was to generate a reliable
high-resolution SDM that would support the eval-
uation of EP leatherback vulnerability to the impacts
of fisheries as well as the potential efficacy of conser-
vation management measures (e.g. [ATTC C-19-04)
using the EASI-Fish approach. This study was part of
a multi-year, collaborative effort between IATTC and
IAC representatives, under a 2011 Memorandum of
Understanding (MoU) between the 2 conventions to
inform conservation and management of EP leather-
back turtles in the EPO. Previous research using
satellite telemetry has estimated overlaps between
Atlantic leatherbacks and the potential risk of acci-
dental interactions with fisheries (e.g. James et al.
2005, Fossette et al. 2014). Similarly, for EP leather-
backs, previous studies have developed potential
methods for producing SDMs using either individual-
based satellite telemetry data (Hoover et al. 2019),
presence-only observation data (Degenford et al.
2021), or both (Liang et al. 2023). Furthermore, there
is clear value in a detailed investigation of inter-
and intra-annual leatherback distributions in rela-
tion to large-scale environmental cycles (e.g. El Nino—
Southern Oscillation [ENSO| regimes, climate change)
to inform adaptive management options that reflect
these dynamics (e.g. Hazen et al. 2018, Willis-Norton
et al. 2015, Pons et al. 2022). Leatherback movements,
habitat use, and life history are known to be strongly
influenced by environmental conditions, specifically
how those conditions affect resource availability (Saba
et al. 2007, 2008, Shillinger et al. 2008, 2010, Wallace
& Saba 2009, Bailey et al. 2012, Hoover et al. 2019).
Thus, predictions of leatherback occurrence in time
and space at different scales would be highly infor-
mative and useful for fine-tuning conservation strat-
egies in the EPO.

In this study, we developed a hierarchical machine-
learning modeling approach that used a region-wide
presence—absence data set for EP leatherback turtles
and incorporated different predictive variables and
modeling configurations to (1) understand the poten-
tial distribution of the species at different spatio-tem-
poral scales, (2) identify the environmental prefer-
ences of the species, and (3) develop a final prediction
map describing the most plausible distribution for the

species that will be used in a concurrent study to
assess the species’ vulnerability to fishery interac-
tions. This paper describes the development of a
novel SDM that was then used to quantify and miti-
gate the impacts of EPO fisheries on EP lea therback
turtles, helps inform their vulnerability status, and
guide the development of appropriate conservation
and management decisions (Griffiths & Wallace et al.
2024, this volume). It was also envisaged that if the
model was successful for leatherback turtles, it could
also be applied to other data-limited vulnerable taxa.

2. METHODS

All data processing and analytical work was carried
out using R version 3.4.3 (R Core Team 2017)).

2.1. Fisheries observer data

We used 26 years (1995—2020) of observer and log-
book data collected from a variety of industrial and
small-scale coastal (artisanal) fisheries (Table 1) oper-
ating in 6 countries and the high seas within the IATTC
convention area—defined as the region from the
Pacific coast of the Americas to 150° W between 50° S
and 50° N. Our data set included observations of leath-
erback turtle presence as well as absence during fish-
ing operations compiled by a participatory collabo-
ration coordinated by the IATTC and [AC to undertake
the EASI-Fish leatherback vulnerability assessment.

Nearly 90% of high-seas presence—absence data
were derived from large-scale tuna longline fishing
vessels (=24 m, hereafter called the 'industrial long-
line fishery'; 484 active vessels in 2022; https://iattc.
org/en-US/management) and the industrial tropical
tuna large purse-seine fishing fleet (Class 6 with a car-
rying capacity of >363 mt, 180 active vessels in 2022;
https://iattc.org/en-US/management). The data in-
clude set-level information on leatherback turtle
interactions along with location, date, and time of the
observation. The distribution of industrial tuna fish-
ing effort was mostly concentrated (>75% of sets)
between 20° N and 20° S during the study period. The
data for these fleets were collected by IATTC on-
board scientific observers or submitted to the IATTC
by its members under Resolution C-19-08. The ob-
server coverage rate was close to 100% for purse-
seine vessels of Class 6 and approximately 5% for the
industrial longline fishery.

In contrast to the industrial fisheries in the EPQO,
catch and effort by the numerous artisanal fleets that
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Table 1. Data sources and period of coverage of data used to build the leatherback species distribution model for the East

Pacific Ocean

Country Gear First Last Presence Abundance Effort No.of No.of No.total 9% of Source
year vyear only presences ind. sets presences
Chile Purse-seine 2015 2019 No No — % % 4396 0.07 Observers
Chile Industrial 2001 2018 No Yes Yes neT 365 13828 2.36 Observers
longline (No. of hooks)
Chile Artisanal 2002 2018 No Yes Yes 29 62 1831 % B Observers
longline (No. of hooks)
Chile Artisanal 2010 2019 No No) Yes 2 2 o564 0.35 Observers
longline (No. of hooks)
(espinel)
Chile Artisanal
gillnet 2007 2019 No Yes No 22 24 1399 1.57 Observers
Colombia Gillnet 2017 2018 Yes No No % 3 3 - Observers
Colombia Longline 2018 2018  Yes No No . 2 2 = Observers
IATTC Purse-seine 1995 2020 No Yes No 212 274 332857 0.05 Observers
IATTC Longline 2013 2020 No Yes No 67 67 24005 0.28 Observers
Panama Purseseine/ 2018 2020 Yes No No 10 10 10 — Observers
longline /
gillnet
Peru Longline 2001 2019 Yes No = 186 186 186 — Pro-
(surface]), Delphinus
gillnet
Ecuador Purse-seine 2019 2020 No No — 3 3 2746 0.11 Observers
Ecuador Longline
(bottom) 2017 2020 No No No 0 0 766 0.00 Observers
Ecuador Longline 2019 2020 No No No 2 2 1667 0.12 Observers
[surface)
Peru Driftnet / 1997 2015  Yes No No 141 141 141 — IMARPE/
gillnet ACOREMA
Peru Driftnet / 2013 2020  Yes Yes No 21 21 21 - IMARPE
gillnet (LAMBA-
YEQUIE)
WWEF Longline 2004 2009 No Yes Yes 20 20 7539 27 WWF-
(various) (Various) IATTC
Costa Rica Longline 2005 2012 No Yes Yes 9 3 2602 0.19 Observers
All (No. of hooks)
1995 2020 1145 1190 594563 0.19

operate within the exclusive economic zones (EEZs)
of countries in the EPO generally have very low (if
any) observer coverage and are poorly documented
in general. However, based on available data (1.e. col-
lected by opportunistic or sporadic observations, and
port-based interviews with fishermen), leatherback
turtles have been shown to be heavily impacted by
coastal artisanal gillnet and longline fisheries, par-
ticularly in foraging areas but also in migratory and
reproduction areas (Frazier & Brito 1990, Alfaro-
Shigueto et al. 2011, 2018, Quiniones et al. 2021). Rea-
sonably detailed effort data for artisanal longline ves-
sels throughout Central America was available from

IATTC's long-term research program that examined
the effects of different hook types on marine turtle
bycatch rates, reported in part by Andraka et al.
(2013). In addition, unpublished data pertaining to
leatherback turtle interaction and fishing effort infor-
mation for several artisanal fisheries operating in ter-
ritorial waters of 6 countries in the EPO were opportu-
nistically compiled (Table 1).

Duplicated records, data outside the EPO, and
observations without reliable date and location infor-
mation were removed from the data set (n = 57 re-
cords, -5% of the initial presences). The final data
set included 1088 leatherback records from nearly
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575000 fishing sets (i.e. 0.19% of sets containing at

least one leatherback observation) from all years with
available data (Table 1, Fig. 1).

2.2. Predictive variables

A total of 23 variables were included in SDMs,
which included 3 spatio-temporal variables, 11 surface
variables, 2 subsurface variables, and 2 static vari-
ables (Table 2). The 3 spatio-temporal variables in-
cluded location and date of set, as seasonality can
affect catches. Spatio-temporal variables can be
confounded with environmental factors and reflect
certain natural processes not captured by the envi-
ronmental (i.e. surface and subsurface) variables. The
majority of environmental data was sourced from
daily or weekly fields of global data assimilative
models (i.e. assimilated data derived from satellites
and in situ platforms) for the [ATTC
convention area at 0.25° (~25 km?)
resolution (available at http://marine.
copernicus.eu/ and https://www.aviso.
altimetry.fr/). The 0.25° spatial resolu-
tion, combined with a fine temporal
scale, is considered adequate for hab-
itat modeling (Scales et al. 2017a).

The 11 surface variables chosen in-

40°N

30°N

cluded sea surface temperature (SST) 20°N
and its gradient (SST _grad; calculated

as the change in temperature at the

same pixel over a period of 7 d), salinity 10°N
(Sal), sea surface height (SSH), current
speed (Vel), current direction (Dir), eddy
kinetic energy (EKE), finite size Lya-
punov exponents (FSLE), front index
(FrontIndex; estimated as a count of the
front pixels in the grid cell for the 7 d
window), chlorophyll a (chl), and chl a
gradient (chl grad; computed as the 20°5 &
difference in chl a concentration in the

Dﬂl

10°S

same pixel over a 7 d period).

The 2 subsurface variables included 30°S
temperature at 100 m depth (SST;q)
and mixed layer depth (MLD). SSTq
and MLD have proven to be helpful
to improve SDMs for large pelagic
species (Brodie et al. 2018) and help

40°5

describe the 2-dimensional (i.e. verti- 150°W  140°W

cal and horizontal space) structure of

to land (LandDistance). These variables were ex-
tracted from the Global Marine Environmental Data-
sets (Basher et al. preprint, doi:10.5194/essd-2018-64)
and MARSPEC Ocean Climate Database (Sbrocco &
Barber 2013), respectively, and have been shown to

be important in defining leatherback turtle habitat
(e.g. Hazen et al. 2018, Robinson et al. 2016, Willis-

Norton et al. 2015).

2.3. Model development

In the interest of robustness and to inform compari-
sons, we took a hierarchical multi-model approach,
building 6 presence—absence (catch vs. zero catch
per set, binary response) model configurations with
each set of variables, from the simplest to the most
complex models. The following model configurations
were established with all presence and absence data:

130°W  120°W  110°W 100°W  90°W  80°W  70°W

the water column properties.
The 2 static wvariables included
bathymetry (Depth) and the distance

Fig. 1. Distribution of leatherback sea turtle presences (red points) and absences

(black points) collected by on-board observers and logbooks for industrial

longline and purse-seine fisheries and small-scale longline and surface gillnet
fisheries in the Eastern Pacific Ocean between 1995 and 2020
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Table 2. Comparing data sources and spatio-temporal resolutions for variables used in species distribution models. D: daily;

W: weekly
Variable Unit Spatial resolution Temporal resolution Source
Spatio-temporal
Latitude Decimal degree GPS - —
Longitude Decimal degree GPS —_ -
Day of the year Calendar day — D Processed
Environmental surface
Sea surface temperature e & 1/4° D CMEMS
Sea surface temperature gradient g 1/4° D Processed
Salinity gkg™! 1/4° D CMEMS
Sea surface height m 1/4° D CMEMS
Current speed ms™! 1/4° D Processed
Current direction Degrees 1/4° D Processed
Eddy kinetic energy cm? g2 1/4° D Processed
Finite size Lyapunov exponents d-! 1/25° D AVISO
Front index Count of front pixels per 1/4° W Processed
cell for the 7 d window
Chlorophyll mg m > 1/4° W CMEMS
Chlorophyll gradient mg m™> 1/4° W Processed
Environmental subsurface
Temperature at 100 m C 1/4° D CMEMS
Mixed layer depth 1/4° D CMEMS
Static
Bathymetry 101 — GMED
Distance to coast 1/120° - MARSPEC
(Sbrocco & Barber 2013)

(1) spatio-temporal, (2) surface, (3) subsurface, (4)
environmental (surface + subsurface), () static, and
(6) full (environmental and static) (Fig. 2). Because
the full model had the best performance metrics
(see Table 3), subsequent models using different
proportions of presence to absence data were only
established with this set of variables (full; environ-
mental and static variables) (see Section 2.3.3 for
details).

2.3.1. Model building

BRTs are a flexible classification and regression
algorithm based on machine-learning principles (Elith
et al. 2006, De'ath 2007). Consequently, some of the
caveats of more commonly used techniques, such as
generalized linear models (GLMMs) or generalized
additive mixed models (GAMM), are not applicable.
BRTs have the particular advantage of being tolerant
of missing values, outliers, correlation, collinearity,
non-independence, and allowing for the inclusion of
irrelevant predictors (Leathwick et al. 2006). BRTs are
also designed to accommodate non-linear relation-
ships, large high-dimensional data sets, imbalanced
classes, and limited species occurrences (Elith et al.

2008, Mi et al. 2017). While GLMMs and GAMMs
seek to fit the most parsimonious model to a data
set, BRTs combine stochastic predictions of many
simple models (i.e. many shallow classification trees)
to maximize robustness and predictive performance
to reduce associated error (Scales et al. 2017b). Ac-
cordingly, we fitted BRTs with all available sets of
covariates. In the past, authors also fitted GAMM and
random forest (RF) models to presence—absence data
for other species to compare and better understand
consistency and interpretation between algorithms
(e.g. Lopez et al. 2019). In these cases, BRTs performed
better than GAMMIs and had very similar performance
to the RFs. As such, we decided to use BRTs to build
all the models in this study, which were implemented
using the R package 'dismo’ (Hijmans et al. 2017).

In fitting BRTs, we adapted the protocols outlined
by Elith et al. (2008), Scales et al. (2017b), Brodie et al.
(2018), and Hazen et al. (2018). Presence—absence
models were built with a binomial (Bernoulli) distri-
bution. We used a tree complexity of 3, a bag fraction
of 0.7, and conducted sensitivity analyses on learning
rate ('shrinkage’) for each model set, aiming for at
least 1000 trees in final model configurations. The
sensitivity runs determined 0.01 as the learning rate
to be used in all the models, except for the model with
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the same number of presences and absences (i.e.
50:50 presence—absence ratio; see Section 2.3.3),
where a value of 0.005 was used. Tree complexity
refers to the number of nodes in a tree, which con-
strains the maximum size of each of the regression
trees that together make up a boosted regression tree
model. By controlling the number of nodes or
branches, tree complexity also sets the maximum
number of interactions between predictor variables
that are possible (i.e. 3 in this case, as 2- and perhaps
3-way interactions among variables may be impor-
tant, but higher orders are unnecessary in fisheries
contexts; Soykan et al. 2014). Bag fraction refers to
the proportion of the data that is randomly used for
model building at each step, which usually ranges
between 0.6 and 0.75 (Elith et al. 2008). The stochas-
ticity that this step provides to the model-building
process improves model performance (Soykan et al.
2014).

The potential for model simplification was eval-
uated with the function 'gbm.simplify’'. Simplified
models were fitted by re-running models without
those variables that gave no evidence of improving
predictive performance. Deviance explained, variable
importance, and interactions between variables were
also estimated for all models using the function
‘gbm.interactions’. Each of these configuration set-
tings and the performance procedures are described
in detail by Elith & Leathwick (2017), Elith et al.
(2008), Hazen et al. (2018), Scales et al. (2017b), and
Soykan et al. (2014).

Boosted .
Regression Tune the models EEWSJt'V't‘f |
Trees analysis and Final

Maodels

Spatio-temporal

& Surface

Hierarchical
model building
(all data)

Subsurface

Environmental

Static

2.3.2. Model validation

Patterns derived from SDMs — particularly those
produced by machine-learning techniques — are sus-
ceptible to bias if the original data is biased (see Lee-
Yaw et al. 2022), which may be the case with our
highly imbalanced data set from different sources
(note that the leatherback turtle is not a target species
but a bycatch species for all fisheries included in this
study; hence, the data is expected to be less In-
fluenced by fishing strategies or other variables that
can affect data collection and bias). In an attempt to
address this issue, we conducted extensive model val-
idation exercises. Independent data sets such as
leatherback turtle space use derived from satellite
tracking data (e.g. Shillinger et al. 2008, Bailey et al.
2012) were not made available for our analysis; such
tests of how well SDM predictions agree with inde-
pendent estimates of distributions are rare (Lee-Yaw
et al. 2022). However, we employed multiple valida-
tion approaches as well as an examination of un-
certainty or confidence around predictions by using
subsets of our data set. We acknowledge that such
internal validation approaches do not explicitly ad-
dress biased predictions resulting from biased under-
lying data sets. Two cross-validation methods were
used to evaluate the reliability and the predictive per-
formance of the final models: k-fold cross-validation
(main method) and a hold-out cross-validation (ad-
ditional complementary method). These methods
consist of using independent data sets for model

il ad Ensemble
resence/absence ratios
pE:SE cesapsence ralo . models-
predictions

50% 10 05%

Eslimate statistical

threshold values

Compare different
performance metrics

Select candidates for
final model(s)

map for EASI-Fish

Prediction

odiction

Fig. 2. Infographic description of the methods (sequential from left to right) used to develop the species distribution models.
See Section 2.3 for details
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building (i.e. the training data) and model validation
(i.e. the test data), where data are partitioned into
k equally sized segments or folds through random
resampling (k-fold cross-validation) or are inten-
tionally partitioned into different segments based on
spatial-temporal properties (hold-out cross-valida-
tion). Model performance is assessed by successively
removing each subset, rebuilding the model on the
retained data, and predicting on the omitted data
(Elith & Leathwick 2009). In this study, a kK = 4 par-
titioning method was used, meaning that 75% of the
observations were used for model building, and the
other 259% were used for model cross-validation. In
the hold-out cross-validation, there is no random
shuffling of observations. Instead, data is partitioned
into blocks of interest for model training, and testing
is done with the remaining contrasting block of data
(e.g. Becker et al. 2020). As such, data from neutral
years was used to train the model and test on El
Nino—La Nina data. Similarly, data was also par-
titioned into inshore and offshore blocks, where
inshore data was used to train the model and testing
offshore, and vice versa (2 different limits were
explored to separate inshore and offshore data;
90° W and 100°W). Both k-fold and hold-out cross-
validations avoid the overlap between training data
and test data, yielding a more accurate estimate of the
generalization performance of the algorithm (Villar-
ino et al. 2015).

The predictive power and the stability (i.e. uncer-
tainty or confidence) of the model were assessed by
computing a set of diagnostic metrics. The mean area
under the receiver-operating curve (AUC) (Hanley &
McNeil 1982) and the mean true skill statistic (TSS)
(Allouche et al. 2006) were calculated for each itera-
tion from each confusion matrix to evaluate the pre-
dictive performance of the models, and the coeffi-
cient of variation (CV) of the predictions was used
to evaluate their stability (e.g. Wang et al. 2019,
Montoya-Jiménez et al. 2022, Borokini et al. 2023,
Roberts et al. 2023). The AUC provides a single mea-
sure of overall model accuracy that is threshold-inde-
pendent, with an AUC value of 0.5 indicating that the
prediction is as good as random, whereas AUC = 1
indicates perfect prediction (Fielding & Bell 1997).
AUC has been extensively used in SDMs and mea-
sures the ability of the model to correctly predict
where a species is present or absent (Elith et al. 2006).
An AUC value of >0.75 is considered to have good
predictive power and is acceptable for conservation
planning (Pearce & Ferrier 2000). TSS is an alternative
measure of model accuracy that is threshold-depen-
dent and not affected by the size of the validation set,

and it is an appropriate evaluative tool in cases where
model predictions are formulated as presence—
absence maps (Allouche et al. 2006). TSS is on a scale
from —1 to +1, with 0 representing no predictive skill,
and is calculated from the confusion matrix outputs
as sensitivity plus specificity minus 1 (i.e. TSS = sen-
sitivity + specificity — 1). Threshold independent and
dependent statistics, such as AUC and TSS, respec-
tively, should be used in combination when evaluat-
ing the predictive power of an SDM (Pearson et al.
2006). The model uncertainty or confidence in the
resulting probability estimates was quantified using
the CV, which measures the percentage of variation
around the arithmetic mean of a series (i.e. the ratio of
the standard error to the predicted value per observa-
tion) and was mapped to describe uncertainty along-
side the predictions.

2.3.3. Sensitivity analyses

The model utilizing all data (hereafter called the
‘original model’) contained 573 883 observations (1088
presences; 0.19%). To determine the effect of using
different proportions of presence on model perform-
ance, the relationship between the response variable
and the covariates (i.e. environmental and static), as
well as the generated predictions, a multi-model ap-
proach was conducted using 10 data sets, each having
a different presence—absence ratio. The presence—
absence ratio in the data used to build the final
models was incrementally decreased from 50 to 0.5%.
In each case, all presence observations were included
with a variable number of randomly selected ab-
sences. For example, the 50:50 model included 1088
presences and 1088 absences while the 0.5:99.5 model
included 1088 presences and 216 512 absences (see
Table 4). All models (hereafter called 'final models’)
were run using all environmental and static vari-
ables, as per the full model, and followed the same
model building and validation procedures mentioned
above.

2.4. Predictions
2.4.1. Daily predictions

Daily predictions of the probability of occurrence of
leatherback turtles across the IATTC convention area
were conducted for 2002—2020 (i.e. 6935 daily predic-
tions). A series of time-matched environmental data
fields (both surface and subsurface as well as static
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variables) were used to generate daily predictions
based on the 11 final models and their best number of
trees using function 'predict’ in the R package 'raster’
(Hijmans & van Etten 2015). Therefore, 11 different
predictions were computed for each day of the time
series to inform consistency and interpretation, and
to visualize the effect of accounting for different
proportions of presences on the predictions. The
spatial resolution of the predictive surface was set

to the lowest common resolution of environmental
data fields (0.25%).

2.4.2. Prediction averaging and ensemble

Daily predictions (n = 6935) were averaged for
2002—2020 for each of the 11 final models, at the
full regional scale averaged across the study period
(Figs. S1 & S2 in the Supplement at www.int-res.com/
articles/suppl/n053p271_supp.pdf), quarterly (Fig. S3
in the Supplement), and by ENSO phase (i.e. neutral,
La Nina, El Nino; Figs. S4 & S5 in the Supple-
ment). Different ENSO regimes were defined follow-
ing NOAA's Earth System Research Laboratories
Oceanic Nino Index, where index values of +0.5 or
higher indicate El Nino and values of —0.5 or lower
indicate La Nina phases (https://www.ncei.noaa.gov/
access/monitoring/enso/sst#oni). Visual inspection
of predictions and exploration of performance met-
rics and the relationships between the response vari-
able and covariates suggested 2 groups of similar
models: (1) 6 models with a presence—absence ratio
ranging from 50 to 109% and (2) 5 models with a pres-
ence—absence ratio ranging from 5 to 0.19%. We con-
cluded that the models of the first group best
reflected the full suite of existing leatherback turtle
distribution data (e.g. Shillinger et al. 2008, Qui-
nones et al. 2021) and SDMs (Hoover et al. 2019,
Degenford et al. 2021, Liang et al. 2023) in the region.
Therefore, an ensemble model was created using
the average predictions from all models having a
presence—absence ratio of 50 to 10%. Similarly, the
model with a 25% presence—absence ratio was also
identified by both expert opinion and performance
metrics as a plausible model (hereafter called the 'ref-
erence model'). Therefore, an ensemble model was
developed using the average predictions from the
upper (33:66), lower (20:80), and intermediate (i.e. ref-
erence) (25:75) models. Generating the 2 ensemble
predictions allowed comparisons between candi-
dates and the exploration of the potential effects of
model selection on the final prediction (Fig. S6 in the
Supplement).

2.4.3. Probability-of-occupancy threshold

The first stage of EASI-Fish in estimating the wvul-
nerability of a species to fisheries impacts is to deter-
mine the number of grid cells in which the species is
considered to be present and which also contain fish-
ing effort. Because SDMs estimate the probability of a
species to occur in each grid cell, a probability-of-
occupancy threshold value () must be used to define
whether the species is present or absent in each cell.
However, the spatial extent of the species’ distribu-
tion increases and decreases with lower and higher y
values, respectively, and thus influences the propor-
tion of the species’ population that is exposed to fish-
ing. To account for this uncertainty, 3 y values (0.1,
0.2, and 0.3) were applied to each 0.25° cell, based on
statistically determined thresholds and expert eval-
uation of prediction maps. This range was statistically
determined by overlaying the distribution of pre-
dicted probability of presence with that of predicted
probability of absence. The y value where these 2 dis-
tributions intersected was selected to define the most
probable species distribution, and upper and lower
bounds were selected by visual inspection of the 2
distributions on either side of the intersection point
(Lopez et al. 2020).

Given the Critically Endangered status of EP leath-
erbacks, we selected relatively low 1 values to con-
servatively include areas where experts considered
leatherbacks likely to occur, even if in relatively low
numbers and for limited periods of time, based on
documented patterns of spatio-temporal habitat use
(Shillinger et al. 2008, 2011, Donoso & Dutton 2010,
Bailey et al. 2012, Quinones et al. 2021) and pre-
viously published SDM maps (Hoover et al. 2019,
Degenford et al. 2021). This was important to ensure
that EASI-Fish would be precautionary in its calcula-
tions of fishery impacts on leatherbacks throughout
their distribution and across industrial and small-
scale fisheries known to interact with the species (see
Griffiths & Wallace et al. 2024).

3. RESULTS
3.1. Model performance

Models that included all data and environmental
and static variables (e.g. Model 6—full) performed
better according to the diagnostic measures we used
(deviance explained, AUC, and TSS) (Table 3). In

general, complex models (e.g. Models 4 and 6) had
better performance than simpler models including
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sets of wvariables individually (e.g.
Models 1, 2, 3, and 35). These models
explained between 19.71 and 40.57%
of the deviance in the data, had AUC
values between 0.79 and 0.94, and had
TSS values that ranged between 0.51
and 0.76 (Table 3). The number of trees
created by these models ranged
between 3600 and 7000. The com-
parison in model performance led us
to recommend the use of the full
model configuration (Model 6—full,
environmental and static variables) for
further exploration on the sensitivity
analysis.

Models including different pro-
portions of presence ratios with en-
vironmental and static variables (i.e.
Model 6—full) showed similar but
also different performance under the
diagnostic measures that we used
(Tables 4 & S1 in the Supplement). In
general, models with balanced or
slightly imbalanced data sets (i.e.
models 50:50, 33:66, 25:75, 20:80, 15:85,
and 10:90) had better performance
than models that used highly im-
balanced data sets (i.e. models 5:95,
2.5:97.5, 1:99, 0.5:99.5, and original—
0.19%). These models explained be-
tween 40.57 and 61.54% of the devi-
ance in the data, had AUC wvalues
between 0.92 and 0.96, and had TSS
values that ranged between 0.76 and
0.81 (Table 4). Models built for the
hold-out additional complementary
cross-validation also performed well
(Table S1). In particular, models trained
without data pertaining to specific
periods and then tested against them

Table 3. Hierarchical model performance metrics with all data (n = 573 889).
Fit: fitted model; Simp: simplified model; ST: spatio-temporal variables; SUR:
environmental surface wariables; SUB: environmental subsurface wvariables;
ENYV: environmental surface and subsurface variables; STA: static variables;
FULL: all environmental variables and static variables. Ir: learning rate; n.trees:
number of trees generated by model; Dev: deviance; AUC: area under the curve;
TSS: true skill statistics; Drop: Dropped variables after model simplification;
EkE: eddy kinetic energy

Ir n.trees Dev AUC TSS Drop
| Fit 0.01 4500 38.64 0.89 0.66
ST Simp — - - — - No drop
2 Fit 0.01 5150 32.28 o -
SUR Simp 5150 32.40 0.92 0.71 EkE
3 Pt 0.01 3600 23.62 0.88 0.65
SUB Simp — - o - - No drop
4 Fit 0.01 5600 38.14 0.94 0.74
ENV Simp — - - - - No drop
5 Fit 0.01 4400 19.71 0.79 0.51
STA Simp — - — - - No drop
6 Fit 0.01 7000 40.57 0.94 0.76
FULL Simp — - . o - No drop

Table 4. Performance metrics of the models conducted during the sensitivity

analyses for full models (all environmental and static variables) with different

presence—absence ratios (e.g. 50:30 presence to absence ratio = 50 % presence

data and 509% absence data in the model). Fit: fitted model; Simp: simplified
model; Drop: Dropped variables after model simplification

Ir n.trees Dev AUC THS Drop

50:50 Fit  0.005 2900 58.10 — —

n=2176 Simp 0.005 3650 59.37 0.92 0.71 7 variables
33:66 Fit 0.01 2050 39.16 — -

n=23264 Simp 0.01 2650 61.54 0.94 0.76 5 variables
2579 Fit 0.01 2700 39.70 — -

n=4352 Simp 0.01 3250 60.42 0.96 0.81 7 variables
20:80 Fit 0.01 3200 60.29 — -

n=5440 Simp 0.01 3350 39.14 0.94 0.77 b variables
15:85 Fit 0.01 3950 60.21 — -

n=7230 Simp 0.01 3650 28.96 0.94 0.76 3 variables
10:90 Fit 0.01 5050 60.93 — -

n= 10880 Simp 0.01 4800 60.16 0.95 0.78 2 variables
3:95 Fit 0.01 5300 56.36 0.95 0.78

n=21760 Simp - . — — - No drop

2.997.5 Fit 0.01 6400 54.67 - —_
n=43520 Simp 0.01 3650 52.08 0.95 0.77 7 variables

(e.g. El Nino, La Nina) showed high 1:99 Fit 001 6650 4924 094  0.78

AUC, TSS, and deviance explained n = 108800 Simp — - o — - No drop
values (AUC -0.9-0.85, TSS -0.8— Ufi:gzgigﬁﬂ{] SE;;[ 0.01 6100 45.23 0.94 0.76 e
0.60, 50—60% deviance explained) | go0g) Ft 001 7000 4057 094  0.76 ’
(Table S1). Similarly, models trained n = 573889 Simp — — — — — No drop
with inshore or offshore data (i.e.

limits at 90W and 100W explored)

and tested against the remaining data showed rea- 3.2. Drivers of leatherback

sonable performance metrics (AUC -0.7—0.6, TSS turtle presence

-0.3—0.2, -30—60% deviance explained) (Table S1).

Based on these diagnostic measures, the model An examination of the relationships between spe-
using a 25% presence—absence ratio was identified cies and the environmental and static variables

as the reference model.

showed a range of interesting patterns for each of the
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11 final models, based on variable importance analy-
sis (Fig. 3) and partial dependence plots (Fig. S7).
These indicators suggested 2 groups of similar models:
(1) models with a presence—absence ratio ranging
from 50 to 10% and (2) models with a presence—
absence ratio ranging from 5 to 0.19%. The first group
showed higher variable importance with SST, SST g0,
chl, MLD, Frontindex, chl grad and Dir, whereas
the second group showed higher values for Depth,
Sal, LandDistance, FSLE and SSH.

After simplification of the reference model, 8 vari-
ables were included in the final model, for which
relative variable importance was 3.3—49.99%. EKE,
FSLE, LandDistance, SSH, Vel, SST grad, and Fron-
tindex were dropped from the final model as they did
not improve predictive performance. With the excep-
tion of chl grad (3.3%), all variables contributed
more than 5%: SST (49.9%), Depth (12.5%), MLD (9%),
SST100 (7.9%), Dir (6.7%), chl (6.2%), and Sal (5%)
(Fig. S7).

Depth

Sal

SST
"
LandDistance
SST 100
Chl
FSLE

The model identified higher probabilities of leather-
back turtle presence around SST values of 16—-20°C
and in waters shallower than 1000 m. MLD values of
<100 m were associated with higher probabilities of
leatherback turtle presence, whereas SST,,, showed a
positive relationship. Currents with southwest direc-
tion showed an evident negative relationship with
leatherback turtle presence. A positive relationship
was also observed between the leatherback turtle
presence probability and CHL, while the opposite re-
lationship was observed for Sal (i.e. salinities higher
than 30 PSU). Similarly, the model showed higher
probabilities of leatherback turtle presence at posi-
tive chl grad values.

3.3. Predictions

Final models were used to predict species habitat
suitability in the convention area for 2002—-2020

FULL
0.5
1
2.5
5
10
15
20
25
33
50

EkE

Dir

chl_grad

SST _grad

SSH

Frontindex

MLD Vel

Fig. 3. Relative variable importance in the series of species distribution models generated using different proportions of pres-

ence versus absence data; 1.e. the ratio of presences to absences used to build the final model (e.g. 50 refers to a 50:50 presence

to absence ratio; 33 refers to a 33:66 presence to absence ratio, etc.). Variables included (see Section 2.3 for more details): sea

surface temperature (SST) and its gradient within the same pixel over a 7 d period (SST_ grad), salinity (Sal), sea surface height

(55H), current speed (Vel), current direction (Dir), eddy kinetic energy (EKE), finite size Lyapunov exponents (FSLE), front

index (FrontIlndex), chlorophyll a (chl), chlorophyll a gradient (chl__grad), temperature at 100 m depth (S5Tq), mixed layer
depth (MLD), bathymetry (Depth), and the distance to land (LandDistance)
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(Figs. S1 & S2), as well as by quarter (Fig. S3), and
ENSO phase (Figs. S4 & S35). Predictions revealed
spatial differences among models, with, in general,
higher probabilities and lower CV of leatherback tur-
tles predicted by models with presence—absence
ratios ranging from 50 to 10%. The predictions of this
group of models highlighted several areas expected
to support higher residence or occurrence by leather-
back turtles (Fig. 4). These include coastal areas near
nesting beaches in Mexico and Central America,
nearshore foraging areas in southern latitudes (Qui-
nones et al. 2021), and some high-seas areas through
which leatherbacks transit and in which they are pre-
sumed to forage (e.g. Bailey et al. 2012). These areas
also showed relatively low CV values (Figs. 5 & S2). In
particular, the continental shelf and adjacent high-
seas areas within South American EEZs (specifically
from southern Ecuador to northern Chile) as well as
the higher latitude subtropical convergence zone
extending from south-central Chile clearly and con-
sistently supported higher probabilities of leather-
back turtle presence, with relatively low associated
CV wvalues (Figs. 5 & S2). These patterns were also
reflected in maps of the ensemble predictions and
after applying the probability of occupancy thres-
holds mentioned above (Fig. 4).

While these spatial patterns were generally con-
sistent by quarter (Figs. 6 & S3) and ENSO phase
(Figs. 7 & S4), the relative area and distribution of pre-
dicted habitat varied at these scales. Predicted leath-
erback habitat in the Northern Hemisphere, particu-
larly off Mexico and Central America, was most
available during Q1 and reduced in other quarters,
roughly opposite the trends for predicted habitat off
South America (Fig. 6). In addition, predicted leather-
back habitat generally increased during the La Nina
phase relative to neutral and El Nino phases, particu-
larly along the equator and in the Humboldt Current
region (Figs. 7, 8, S4 & S5). However, there were some
areas where predicted habitat increased during the El
Nino phase, such as the high-latitude region between
25° and 40°S (Figs. 7, 8, 54 & S)).

4. DISCUSSION

Understanding the spatial distributions of marine
species is becoming increasingly important as interna-
tional and regional oceans and fisheries management
instruments evolve further toward ecosystem-based

approaches to conservation and management of mar-

ine resources (Aburto et al. 2012, Kirkfeldt 2019). In a
fisheries context, having a reliable prediction of a spe-

cies' distribution that can be compared with that of fish-
ing effort can allow managers to determine the extent
of overlap and implement conservation and manage-
ment measures (CMMIs), such as spatial closures, that
can reduce fishery interactions and fishing mortality
and thus ensure long-term population sustainability.

4.1. Model performance and relevant features

SDMs have traditionally required a large number of
species presence locations at a fine resolution to be
useful for fisheries management in jurisdictions that
typically span spatial scales of hundreds or thousands
of kilometers. Furthermore, because the largest quan-
tity of data is usually collected for species of high
commercial importance (i.e. target species), the ap-
plication of SDMs has primarily been constrained to
these species (Melo-Merino et al. 2020). Unfortu-
nately, reliable catch or even simple occurrence data
is often lacking for bycatch species for a variety of
reasons, such as being of lower economic importance,
the absence of observer programs and policies man-
dating fishers to record all species interactions in
catch logbooks, policies requiring rapid release and
no-retention of species, the typically low frequency of
interactions of these non-target species, and issues per-
taining to species identification. As the present study
showed, the incidence of observations of the Criti-
cally Endangered EP leatherback turtle population in
EPO fisheries was extremely low—1088 occurrences in
over half a million observations. Regardless of whether
the low frequency of interactions is due to a naturally
low density of leatherback turtles in the EPO, rarity of
the species following its documented population de-
cline (Laud OPO Network 2020), or low gear selectiv-
ity by EPO fisheries, the data available are insufficient
to undertake conventional stock assessments. There-
fore, simpler ecological risk assessment approaches
that are designed to assess the vulnerability of data-
limited species (e.g. EASI-Fish) are highly reliant on
estimating the 3-dimensional overlap between the
species and fisheries, and thus reliable SDMs.

Although BRTs have been applied to several marine
species, they are typically used with larger numbers of
occurrences than we had available for this study. Fur-
thermore, validation of our model predictions using a
truly 'independent’ data set (e.g. satellite telemetry
data) was not possible because such data were not
made available for our project. This required a deep
exploration of specific model diagnostics and sensitiv-
ity analyses to determine the utility of BRTs in such
data-limited settings. The present study showed the im-
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Fig. 4. (a) Average predictions from an ensemble of species distribution models (SDMs) where the ratio of presence to absences

were 33—25—20 for 2002—2020; warmer colors: higher probabilities. (b) The final appearance of the SDM predictions using

3 threshold values (minimum = 0.3, blue; most probable = 0.2, red; maximum = 0.1, green) upon which the predicted probabil-

ity of presence is used to create binary values of species presence. For example, at a threshold of 0.2, predicted probabilities of
presence above and below 0.2 are predicted to be absence and presence records, respectively
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